Synthetic Active Site Model of the [NiFeSe] Hydrogenase
نویسندگان
چکیده
A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe('S2Se2')(CO)3] (H2'S2Se2' = 1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni('S2Se2')] with [Fe(CO)3bda] (bda = benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe('S2Se2')(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe('S2Se2')(CO)3] with the previously reported thiolate analogue [NiFe('S4')(CO)3] (H2'S4' = H2xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe('S2Se2')(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe('S2Se2')(CO)3] and [NiFe('S4')(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.
منابع مشابه
Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase.
This study shows how the NiFeSe site of an anaerobically purified O2-resistant hydrogenase reacts with air to give a seleninate as the first product. Less oxidized states of the active site are readily reduced in the presence of X-rays. Reductive enzyme activation requires an efficient pathway for water escape.
متن کاملInsights from the computational studies on the oxidized as-isolated state of [NiFeSe] hydrogenase from D. vulgaris Hildenborough.
A density functional theory study of the active site structure and features of the oxygen tolerant [NiFeSe] Hase in the oxidized as-isolated state of the enzyme D. vulgaris Hildenborough (DvH) is reported here. The three conformers reported to be present in the X-ray structure (PDB ID: ) have been studied. The novel bidentate interchalcogen ligand (S-Se) in Conf-I of the [NiFeSe] Hase reported ...
متن کاملElectrocatalytic proton reduction by a model for [NiFeSe] hydrogenases.
Two new heterodinuclear nickel-iron complexes [Ni(pbSmSe)FeCpCO]PF6 and [Ni(xbSmSe)FeCpCO]PF6 were synthesized as mimics of the [NiFeSe] hydrogenase active site (HCp = cyclopentadiene; H2pbSmSe = 1,9-diselenol-3,7-dithia-2,2,8,8-tetramethylnonane; H2xbSmSe = 1,2,-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene). The compounds were characterized by single crystal X-ray diffraction and cyclic volt...
متن کاملOxidative inactivation of NiFeSe hydrogenase.
We propose a resolution to the paradox that spectroscopic studies of NiFeSe hydrogenase have not revealed any major signal attributable to Ni(III) states formed upon reaction with O2, despite the fact that two inactive states are formed upon either aerobic or anaerobic oxidation.
متن کاملSynthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases.
A series of structural models of the Ni centre in [NiFeSe] hydrogenases has been developed which exhibits key structural features of the Ni site in the H2 cycling enzyme. Specifically, two complexes with a hydrogenase-analogous four-coordinate 'NiS3Se' primary coordination sphere and complexes with a 'NiS2Se2' and a 'NiS4' core are reported. The reactivity of the complexes towards oxygen and pr...
متن کامل